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ПРЕДИСЛОВИЕ 
 

В настоящем методическом пособии дается общая классифика-
ция и анализ математических моделей, используемых для кратко-
срочного и оперативного прогнозирования параметров объектов, в 
частности, электропотребления предприятий и энергосистем. Выде-
ляются три основные группы моделей и методов моделирования: 

1) статистические (вероятностные); 
2) детерминированные (в том числе алгебраические); 
3) комбинированные вероятностно-детерминированные. 
Подробно анализируются модели временных рядов, составляю-

щие основу статистических прогнозирующих математических моде-
лей графиков электрической нагрузки (ГЭН), в частности: AR-, 
ARMA-, ARIMA-, МА-модели, модели взвешенного скользящего 
среднего, экспоненциального сглаживания Брауна и т.п. Как много-
факторные рассматриваются: ARX-модели, ARMAX-модели и т.п. В 
работе показано на реальных данных применимость ARIMA-моделей 
для прогноза графиков нагрузки энергосистем и предприятий. Однако 
структурную устойчивость данная модель сохраняет, если для приве-
дения моделируемого процесса к стационарному виду используются 
разности порядка d<2.  

Анализируются прогнозирующие модели электропотребления, 
основанные на фильтрах Калмана и Винера (модель Заде-Рагаззини); 
спектральных ортогональных разложениях, в том числе Карунена-
Лоэва; каноническом разложении случайного процесса; многомерной 
peipeccmi; теории кластерного анализа; теории распознавания обра-
зов. 

В последние десятилетия наметилась тенденция более широкого 
использования алгебраического (детерминированного) подхода к ре-
шению проблемы идентификации объектов и процессов. Это связано 
с тем, что в статистической постановке проблемы зачастую отсутст-
вует возможность получения представительных выборок или исполь-
зуется операция осреднения по множеству реализаций, что в целом 
ряде случаев приводит к ухудшению математической модели, осо-
бенно в условиях малых и нестационарных выборок. 

Основные отличия алгебраического подхода: 
1) при моделировании находятся, уточняются и используются не 

статистические характеристики ошибок измерений, а непосредствен-
но сами значения ошибок в конкретном эпизоде идентификации; 
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2) уточнение параметров модели осуществляется непосредст-
венно по невязке сигналов на выходе объекта и на выходе текущей 
модели. 

Подробно анализируется применимость детерминированных 
прогнозных моделей: полиномиальной, конечного гармонического 
ряда Фурье, алгебраических регрессий, спектральных разложений, 
нейросетевой, нечеткой модели и т.п.  

Наибольшее распространение в настоящее время находят ком-
бинированные прогнозирующие модели процессов, являющиеся ком-
бинацией статистических и детерминированных моделей. 

В работе проанализировано 14 вариантов наиболее часто ис-
пользуемых комбинированных прогнозирующих математических мо-
делей. 

На основе проведенного анализа были определены общие под-
ходы к построению оперативных и краткосрочных прогнозных моде-
лей процесса электропотребления: 

1) использование трендового подхода и комбинированных веро-
ятностно-детерминированных прогнозных моделей; 

2) использование эвристики о суточном интервале моделирова-
ния; 

3) использование функционального подхода при моделировании 
тренда; 

4) учет типов графиков электропотребления при моделировании 
на основе применения алгоритмов кластеризации и распознавания; 

5) использование эффективных алгоритмов интерполяции, 
фильтрации дискретных сигналов для согласования моделируемых 
процессов на разных уровнях иерархии комбинированных моделей; 

6) моделирование нестационарной остаточной составляющей 
PD(t,d) с применением адаптивных одномерных регрессионных моде-
лей с интегральной составляющей (ARI, ARIMA, ARIMAX) или мо-
делей экспоненциального сглаживания. 
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1. ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ И 
ПРОГНОЗИРОВАНИЯ ПРОЦЕССОВ В СОСТАВЕ 

ОПЕРАТИВНЫХ КОМПЛЕКСОВ 
 

Интенсивное развитие вычислительной техники, теории и прак-
тики моделирования, прогнозирования процессов по-новому ставит 
вопросы создания интеллектуальных адаптивных программных сис-
тем [15,36,38] на базе оперативных комплексов в составе  предпри-
ятий, организаций и т.п. [15,27,39,40-47]. 

В современных теориях идентификации и систем в связи с раз-
витием новых информационных технологий определен новый класс 
систем – «интеллектуальные адаптивные системы»[38]. 

Под этим термином понимают "объединенную информацион-
ным процессом совокупность технических средств и программного 
обеспечения, работающую во взаимосвязи с человеком или автоном-
но, способную на основе сведений и знаний при наличии мотивации 
синтезировать цель, вырабатывать решения о действии и находить 
рациональные способы достижения цели"[38,48]. 

Необходимым условием работы таких систем является модели-
рование процесса, распознавание и прогнозирование. 

Общая структура интеллектуальной адаптивной программной 
системы контроля и идентификации (ИАПСКИ) процесса (объекта) в 
форме прогнозной модели представлена на рис. 1.1. 

На основании сведений о состоянии объекта, окружающей сре-
ды и собственном состоянии системы при наличии памяти и мотива-
ции синтезируется цель моделирования (оперативный или кратко-
срочный контроль, дооптимизация, прогнозирование), которая наря-
ду с другими данными воспринимается динамической системой рас-
познавания и контроля. 

Последняя, с использованием базы данных, производит оценку, 
на основании которой принимается решение о действии и прогнози-
руется результат действия. 

На основе прогнозной информации действие корректируется 
(дооптимизация) и синтезируется алгоритм принятия решения, кото-
рый реализуется после экспертной оценки с помощью компьютерной 
системы и воздействует на объект. Результат действия сравнивается с 
прогнозом и на основе этого корректируется прогнозная модель. 



 8

При несоответствии результатов цели действия генерируется 
аналогично новое действие (дооптимизация), устраняющее несоот-
ветствие и так далее. 

Представленная структура интеллектуальной системы (рис. 1.1) 
инвариантна к объекту и носит универсальный характер. В отличие 
от интеллектуальных адаптивных систем управления [48], в рассмат-
риваемых адаптивных системах контроля и идентификации управ-
ляющее воздействие носит простейший характер типа «включено-
выключено» и при этом отсутствует общепринятый регулятор в фор-
ме передаточных функций или в ином виде, параметры которого из-
меняются в зависимости от целей и задач управления. 

Современный этап в развитии теории идентификации характе-
ризуется прагматичным взглядом на имеющуюся в наличии у проек-
тировщика априорную информацию об объекте контроля и условиях 
его функционирования [38,48-50]. 

Априори известная математическая модель сложного объекта 
идентификации в большинстве случаев не удовлетворяет современ-
ным требованиям, предъявляемым к системам контроля, идентифи-
кации и прогнозирования. 

В сложных системах, работающих в разнообразных условиях, 
как сама математическая модель (уравнения объекта управления), так 
и ее параметры и действующие возмущения (например, их статисти-
ческие характеристики) не только не известны с достаточной точно-
стью, но в ряде случаев их достаточно сложно определить экспери-
ментально заранее [38,48-50]. К таким объектам относятся и объекты 
электропотребления: энергосистемы, объединения, предприятия и 
т.п. 

Таким образом, имеет место априорная неопределенность, пре-
одоление, которой и является применение современных интеллекту-
альных адаптивных систем контроля и идентификации. 

В соответствии с вышесказанным можно выделить два основ-
ных источника априорной неопределенности [51,52]: 

- неизвестность полностью или частично структуры, парамет-
ров, свойств объекта и внешних возмущений на этапе проектирова-
ния системы; 

- существенная изменчивость свойств объекта и внешних воз-
мущений в силу сложности объекта и среды функционирования, что 
исключает возможность точного определения режимов работы объ-
екта заранее. 
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В силу этих неопределенностей система в процессе функциони-
рования сама должна восполнять недостающую информацию. 

На приведенной структурной схеме (рис. 1.1) интеллектуальной 
адаптивной программной системы контроля и идентификации можно 
выделить: 

подсистему контроля, распознавания и прогнозирования 
(ПКРП); 

измерительно-задающую подсистему (ИЗП); 
решающую подсистему (РП). 
Динамическая система распознавания и контроля состояния 

представляет собой сложный программный комплекс, предназначен-
ный для автоматического обеспечения принятия решения при опера-
тивном, краткосрочном моделировании, прогнозировании и контроле 
сложной системы, работающей, как правило, в условиях временных 
ограничений и недостатка априорной информации [48,53]. 

Основными задачами, решаемыми ПКРП в рамках интеллекту-
альных адаптивных систем, являются: 

- построение адаптивной модели контролируемого объекта (сис-
темы) на основе сочетания строгих математических методов и моде-
лей, экспертных, эвристических моделей, моделей теории искусст-
венного интеллекта и тому подобных; 

- реализация прогноза поведения объекта при различных видах 
воздействий, в том числе и внешних условий, для учета при выработ-
ке дооптимизирующего воздействия; 

- распознавание текущего состояния объекта, с целью правиль-
ного выбора математической модели объекта (из имеющегося множе-
ства) для учета сложного (неоднородного) характера работы модели-
руемого объекта [54]. 
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Основными предпосылками целесообразности и неизбежности 
использования ПКРП в составе интеллектуальных программных 
адаптивных систем являются [5,48,49]: 

1. Условия функционирования контролируемых ОЭ, характери-
зуются многообразием данных, состояний и качественных характери-
стик. 

2. Область функционирования систем, как правило, плохо фор-
мализуема. 

3. Компоненты объектов, требуют для описания своей работы, 
состава, структуры и состояния сложноорганизованных моделей. 

4. Данные о текущем состоянии объектов, влияют на процесс 
выработки реакций системы. 

Таким образом, можно сделать вывод, что одним из централь-
ных устройств интеллектуальных адаптивных систем является ПКРП 
и от его построения и работы в определяющей степени зависит рабо-
та всей системы. 

Именно разработке принципов построения ПКРП для групп 
объектов электропотребления необходимо уделять особое внимание. 

При разработке ПКРП в составе интеллектуальных адаптивных 
систем возникают следующие проблемы: 

- разработка новых и адаптация известных теорий и методов для 
описания процессов в объектах; 

-  разработка принципов распознавания состояния объекта 
управления (процесса); 

- разработка принципов дискретных преобразований сигналов, 
фильтрации, дискретизации и интерполирования; 

- определение принципов алгоритмической, информационной и 
программной реализации модулей ПКРП объектов электропотребле-
ния. 
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2. АНАЛИЗ И ОБЩАЯ КЛАССИФИКАЦИЯ 
ПРОГНОЗИРУЮЩИХ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ 

 
Анализ литературы [2,3,5,6,8,27,37,46,51] позволил сформиро-

вать следующую классификацию математических моделей процессов 
для оперативного и краткосрочного прогнозирования. 

Данная классификация вытекает из общих подходов к модели-
рованию процессов и теории идентификации [37,51,52]. 

В зависимости от используемого математического аппарата, 
четко выделяются три основные группы моделей и методов модели-
рования процессов: 

1) статистические (вероятностные); 
2) детерминированные (алгебраические); 
3) комбинированные вероятностно-детерминированные. 
 
2.1. Статистические (вероятностные) модели процессов 
 
Статистические модели получили наиболее широкое примене-

ние в задачах моделирования, прогнозирования процессов электропо-
требления, а также связанных с ним и иных процессов. 

Популярность моделей данного типа объясняется достаточно 
высокой степенью адекватности для решения целого ряда задач тео-
рии и практики радиотехники, прогнозирования процессов в энерге-
тике и иных областях [2,3,5,6,8-12,54,57]. 

В общем случае наиболее полной характеристикой сигнала, как 
случайного стохастического процесса, является n-мерная плотность 
вероятностей [8,9,11,12] ),...,,( 21 ⋅⋅⋅ nPPPϕ , которая при интегрировании по 

ndPdPdP ,...,, 21  дает вероятность того, что случайный процесс пройдет в 
интервалах :)2/;2/(),...,2/;2/( 1111 nnnn PPPPPPPP Δ+Δ−Δ+Δ−  

,..),...,,(...ε 2121

2/

2/

2/

2/

2/

2/

22

22

11

11

nn

PP

PP

PP

PP

PP

PP

dPdPdPPPP
nn

nn

ϕ∫∫∫
Δ+

Δ−

Δ+

Δ−

Δ+

Δ−

=  

где nPPP ,...,, 21  - мощность нагрузки )(tP  в моменты времени nttt ,...,, 21 . 
Следует отметить, что на практике пользоваться многомерными 

плотностями вероятности достаточно сложно. Определение их также 
является трудоемкой задачей [8,9,11,12]. 
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Для нестационарных случайных процессов, представляемыми 
процессами с периодическим трендом, n-мерная плотность распреде-
ления является периодической функцией времени по каждому аргу-
менту: 

))(),...,(),((),...,,( 2121 TtTtTtPPP nn +++= PPPϕϕ , 
где T – период повторения тренда; nitP ii ,1),( == P . Аналогично, и мате-
матическое ожидание, и автокорреляционная функция данного про-
цесса имеют периодический характер: 

.)τ(  )(  );()]([)]([ TRRtpTtMtM c +==+= τPP  
Частные реализации процесса Njtj ,1),( =P  можно исследовать как 

по свойствам отдельных реализаций  )(tjP (изучение процесса 
“вдоль”), так и по свойствам отдельного отсчета )( kj tP , но для всех 
реализаций (изучение процесса “поперек”). В первом случае )(tjP  ве-
личина j – фиксированное целое число и изучение графика осуществ-
ляется на временном интервале ],0[ бTt ∈ , во втором случае фиксирован 
момент времени kt  и изучается поведение отсчета )( kj tP  по всему 
множеству реализаций Nj ,1=  графиков. 

Как известно, изучение отдельных реализаций )(tjP  возможно 
лишь при условии, что случайный процесс является стационарным и 
обладает свойством эргодичности [9,43]. 

Особый интерес вызывают процессы, относящиеся к классу не-
стационарных случайных процессов, выборочные реализации кото-
рых обладают общим детерминированным трендом. 

Для процессов такого типа показано [9,43], что также возможно 
определение статистических характеристик по отдельным реализаци-
ям: 
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ARX-, ARMAX-модели 

Авторегрессионная модель (AR-модель)

Скользящее (MA) и взвешенное среднее

Модель авторегрессии и скользящего 
среднего (ARMA-модель)

Стационарный фильтр Калмана

Модель Заде-Рагаззини (фильтр Винера)

Спектральные статистические модели 
(Карунена-Лоэва и т.п.)

Модели многомерной регрессии

Модели экспоненциального сглаживания 
Брауна, Холта-Винтерса и т.п.

Нестационарный фильтр Калмана-Бьюси

Модель авторегрессии интегрированного 
скользящего среднего (ARIMA-модель)

ARIX-, ARIMAX-модели 

Модели кластерного анализа, теории 
распознавания образов
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Случайные нестационарные графики нагрузки электроприемни-
ков зачастую имеют особенности, упрощающие их анализ и модели-
рование. 

К этим особенностям относится повторяемость технологических 
или суточных циклов, циклов, вызванных сезонными изменениями и 
другими. 

Результаты измерений таких графиков нагрузки или временных 
рядов электропотребления можно представить нестационарным слу-
чайным процессом, все реализации которого имеют общий почти пе-
риодический (периодический) детерминированный тренд. 

Как отмечено в [53], для описания таких процессов не всегда 
требуется усреднение по ансамблю реализаций, а многие важные 
свойства можно оценить по одной реализации, как в случае эргодиче-
ских стационарных процессов на основе формул (2.1)-(2.5). 

 Временным рядом [53-57] называют упорядоченные дис-
кретные, как правило, случайные данные, полученные последова-
тельно во времени через постоянный интервал времени TΔ , называе-
мый интервалом дискретизации. Временные ряды можно рассматри-
вать как случайные стационарные или нестационарные дискретные 
процессы. 

Основу статистических прогнозирующих математических моде-
лей процессов и составляют различные модели временных рядов: мо-
дель скользящего среднего (СС или MA) и взвешенного скользящего 
среднего (ВСС), модель экспоненциального сглаживания Брауна 
(ЭС), авторегрессионная модель (АР или AR), совмещенная модель 
авторегрессии скользящего среднего (АРСС или ARMA), совмещен-
ная модель авторегрессии интегрированного скользящего среднего 
или Бокса-Дженкинса (АРИСС или ARIMA) и т.п . Классификация 
основных из статистических прогнозирующих математических моде-
лей процессов приведена на рис.2.1.  

Статистические модели в зависимости от учета в них в качестве 
входных параметров внешних влияющих факторов делят на: одно-
факторные и многофакторные. В первом типе моделей учет внеш-
них факторов не осуществляется, а строится замкнутая динамическая 
модель самой выходной величины. Во втором типе – динамическая 
модель включает один или несколько внешних влияющих факторов. 
Если модель временного ряда многофакторная, то этот факт может 
отмечаться буквой "X" в сокращении ее названия (ARX-модель, AR-
MAX-модель и т.д.). 
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Помимо моделей временных рядов при статистическом прогно-
зировании процессов используются модели, основанные на [2,5,6,11]: 
фильтрах Калмана и Винера (модель Заде-Рагаззини) ; спектральных 
ортогональных разложениях, в том числе Карунена-Лоэва; канониче-
ском разложении случайного процесса; многомерной регрессии; тео-
рии кластерного анализа; теории распознавания образов. 

Все перечисленные статистические модели процессов (сигна-
лов) могут использоваться при моделировании отдельно, но чаще 
всего в составе комбинированных вероятностно-детерминированных 
моделей. 

Более подробное описание каждой из перечисленных статисти-
ческих моделей с кратким анализом будет произведено ниже. 

 
2.2. Детерминированные (алгебраические) модели процессов 
 
В последние десятилетия наметилась тенденция критического 

отношения к статистической постановке проблемы идентификации 
объектов и процессов [37,58-62], особенно в случае, когда отсутству-
ет возможность получения представительных выборок для построе-
ния математических моделей, статистических характеристик процес-
сов и проверки их адекватности. Кроме того, статистическая теория 
использует операции осреднения по множеству реализаций, что в це-
лом ряде случаев приводит к ухудшению математической модели, 
особенно в условиях малых и нестационарных выборок. 

В электроэнергетике, как отмечено в работах [63,64,185], также 
есть примеры, когда вероятностные модели применяются без над-
лежащего обоснования, когда отсутствует возможность получения 
представительных выборок для построения математических моделей 
и проверки их адекватности. 

В этих случаях эффективно использовать алгебраический, де-
терминированный, а не статистический подход к решению проблемы 
идентификации [37,62]. Основные отличия алгебраического подхода 
от статистического заключаются в следующем: 

• при моделировании находятся, уточняются и используются 
не статистические характеристики ошибок измерений, а не-
посредственно сами значения ошибок в конкретном эпизоде 
идентификации; 
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• уточнение параметров модели осуществляется непосредст-
венно по невязке сигналов на выходе объекта и на выходе те-
кущей модели. 

Большинство детерминированных прогнозных моделей процес-
сов (полиномиальная модель, конечный гармонический ряд Фурье, 
алгебраические регрессии, спектральные разложения и т.п.) могут 
представляться моделью общего вида: 

( ) jjj О+= SP ϕ,F ,     (2.6) 
где ϕ  – вектор параметров детерминированной модели; 

[ ]TT
2

T
1

T
1

T ,,,,, ljjljjj −−−= PPZZS ……  – комбинированный вектор: входных 
влияющих факторов Zj , в текущий и ряд предыдущих моментов вре-
мени, а также, возможно, самой выходной величины jP  в предыдущие 
моменты времени; jΞ– вектор ошибки модели; ( )…F  – функция или 
векторная функция, определяющая детерминированную прогнозную 
модель. 

Задача идентификации (2.6) ставится в алгебраическом случае 
следующим стандартным образом: определить наилучшую, по неко-
торому критерию качества ( )ϕ̂I  оценку ϕ̂  параметров ϕ  на основании 
изменений входа-выхода объекта в допустимой области Φ значений 
[37,52]: 

( )⎟
⎠
⎞

⎜
⎝
⎛=

∈
ϕϕ ˆminargˆ

Φ
I

jS
. 

В алгебраической постановке вектор ошибки модели jО  и его 
статистические характеристики считаются неизвестными. 

С формальных алгебраических позиций система (2.6) не разре-
шима, так как содержит два неизвестных вектора: параметров модели 
ϕ  и ошибки модели jО . 

Однако, используя метод наименьших квадратов (МНК) при ал-
гебраической идентификации, модель (2.6), по существу, приближен-
но заменяют системой 

( )jj SP ϕ,F= , 
а за оптимальную оценку ϕ̂  принимают значение, обеспечивающее 
минимум евклидовой нормы вектора невязок, или положительно оп-
ределенной квадратичной формы 

jjI eRe 2т)ˆ( =ϕ ,     (2.7) 
где RRR т2 =  – положительно определенная весовая матрица, 0det ≠R . 

( )jjj SPe ϕ,F−=  – вектор невязок. 
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Хотя использование в теории идентификации этого подхода ста-
тистически не обосновано, тем не менее этот метод является самым 
практичным методом решения задачи по единственной выборке или 
малому количеству выборок измерений ограниченного объема 
[37,51,52].  

Для улучшения оценки ϕ , из соображений общего порядка, яс-
но, что необходимо привлечение дополнительной (не статистиче-
ской) информации либо о векторе параметров ϕ , либо о векторе 
ошибки модели jΞ . 

Одним из путей является либо итерационное уточнение модели 
ошибки путем модификации, например, матрицы R в квадратичном 
критерии качества (2.7), либо реализация постоянной адаптивной на-
стройки модели, либо иные подходы [37,51]. 

В частности, в некоторых подходах рекомендуется фильтровать 
на основе метода экспоненциального сглаживания получаемые оцен-
ки параметров ϕ  модели [6,37]. 

Как алгебраический подход можно рассматривать построение 
математических моделей процессов на основе теории нечетких 
множеств [65-68], искусственных нейронных сетей [69-73], позво-
ляющих формировать модель объекта или процесса в условиях малых 
и нестационарных выборок, а также формализовать экспертные оцен-
ки специалистов. 

Таким образом, можно заключить, что современная теория 
идентификации не исключает различных подходов, в том числе и ал-
гебраических, детерминированных, обосновать применение, которых 
статистическими подходами невозможно. 

Основные детерминированные модели, используемые при моде-
лировании и прогнозировании процессов (сигналов), приведены на 
схеме рис. 2.2. Как правило, данные модели используются в составе 
комбинированных вероятностно-детерминированных моделей.  

Математический аппарат теории нечетких множеств и его 
приложения к задачам практики начали формироваться еще в 60-е 
годы [62,67] и в настоящее время теория нечетких множеств приме-
няется в различных областях техники [62,65]. 

 
 
 
Модели искусственных нейронных сетей [62,69,70-73], приме-

няемые для создания многофакторных моделей электропотребления, 



 19

основываются на методе потенциальных функций [62,74], который 
применяется в задачах распознавания образов и их автоматической 
классификации [62,75].  

В электроэнергетике используется перцептронная реализация 
метода потенциальных функций [70]. На основе моделей многослой-
ного персептрона и искусственной нейронной сети решены задачи 
классификации суточных графиков нагрузки и их краткосрочного 
прогнозирования на срок от одних до десяти суток и моделирования 
электропотребления промышленного предприятия [69-73].  
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2.3. Комбинированные вероятностно-детерминированные 
модели процессов 

 
Все большее распространение в настоящее время находят мате-

матические прогнозирующие модели, являющиеся комбинацией ста-
тистических и детерминированных моделей. Именно эти модели по-
зволяют обеспечить наилучшую точность прогнозирования, адаптив-
ность к изменяющемуся процессу электропотребления [2,5,6]. 

Они базируются на концепции стандартизованного моделиро-
вания нагрузки [6], которая состоит в моделировании фактической 
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нагрузки ( )dt,P  как совокупности стандартизованного графика (базо-
вой составляющей, детерминированного тренда) ( )dtS ,P  и остаточной 
составляющей ( )dtD ,P . 

Данная декомпозиция на составляющие наиболее часто носит 
аддитивный характер [2,76-81, 153]: 

( ) ( ) ( )dtdtdt DS ,,, PPP += ,    (2.8) 
но иногда используется и мультипликативная декомпозиция [6, 153]: 

( ) ( ) ( )dtdtdt DS ,,, PPP = .    (2.9) 
В используемых же обозначениях графиков нагрузки ( )dt,P , 

( )dtS ,P , ( )dtD ,P  малая буква d обозначает тип (номер) прогнозируемых 
суток. 

В других работах [6] используется также модель, объединяющая 
свойства аддитивной и мультипликативной моделей: 

( ) ( ) ( ) ( )dtdtdtdt DSS ,,,, 21 PPPP += ,    (2.10) 
где ( )dtS ,1P , ( )dtS ,2P  – детерминированные составляющие и ( )dtD ,P  – оста-
точная случайная составляющая.  

Наиболее широкое применение в электроэнергетике имеет адди-
тивная модель (2.8), модели же (2.9) и (2.10) имеют ограниченное 
применение. 

Процесс ( )dtD ,P  в первом приближении считают стационарным 
или почти стационарным, что упрощает его моделирование с исполь-
зованием статистических моделей, рассмотренных выше. 

Моделирование (выделение) стандартной составляющей ),( dtSP  
осуществляют различными методами: 

- путем сглаживания нестационарной реализации процессов 
скользящим [6,11,80] или экспоненциальным [6,82] осреднени-
ем; 

- аппроксимацией полиномами [6,21]; 
- компенсацией стандартной составляющей на основе вычисле-
нии разностей n-го порядка [6,83];  

- разделением составляющих по частотам и моделированием ко-
нечными рядами Фурье [11,21,81]; 

- компенсацией математического ожидания суточными разностя-
ми [6,21]; 

- путем декомпозиции по ортогональным векторам или функциям 
[5,6]; 

- путем нейросетевого или нечеткого моделирования (сглажива-
ния) [68,71,72] и др. 
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Кроме того, при моделировании стандартной составляющей 
),( dtSP  также осуществляют ее декомпозицию на отдельные состав-

ляющие [6]: 
( ) ( ) ( ) ( ) ( )dtdtdtdtdt WTRAS ,,,,, PPPPP +++= ,    (2.11) 

где ( )dtA ,P  – составляющая, учитывающая изменение средней сезон-
ной нагрузки; ( )dtR ,P  – составляющая, учитывающая недельную цик-
личность изменения электропотребления; ( )dtT ,P  – трендовая состав-
ляющая, моделирующая дополнительные эффекты, связанные с из-
менением времени восхода и захода солнца от сезона к сезону; ( )dtW ,P  
– составляющая, учитывающая зависимость электропотребления от 
метеофакторов, в частности, температуры. 

Каждая из составляющих в комбинированной модели (2.8), 
(2.11) реализуется на основе того или иного статистического или де-
терминированного метода. Это и определяет многообразие комбини-
рованных прогнозных математических моделей процессов. Комбини-
рованные модели вида (2.8), (2.11) не всегда обязательно содержат 
все перечисленные составляющие: ( )dtS ,P , ( )dtA ,P , ( )dtR ,P , ( )dtT ,P , ( )dtW ,P , 

( )dtD ,P . В ряде случаев одни составляющие вбирают в себя функции 
других отсутствующих в модели составляющих. 

 
 
 

ЗАКЛЮЧЕНИЕ 
 
В заключение следует отметить, что более детальное рассмотре-

ние статистических, детерминированных и комбинированных про-
гнозных математических моделей процессов, протекающих в меди-
цинских, технических и других диагностических системах планиру-
ется рассмотреть в последующих методических пособиях. 
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