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Комбинированные вероятностно-детерминированные 
модели 

 
Все большее распространение в настоящее время находят 

математические прогнозирующие модели, являющиеся ком-
бинацией статистических и детерминированных моделей. 
Именно эти модели позволяют обеспечить наилучшую точ-
ность прогнозирования, адаптивность к изменяющемуся про-
цессу электропотребления [2,5,6]. Они базируются на кон-
цепции стандартизованного моделирования нагрузки [6], ко-
торая состоит в моделировании фактической нагрузки ( )dt,P  
как совокупности стандартизованного графика (базовой со-
ставляющей, детерминированного тренда) ( )dtS ,P  и остаточ-
ной составляющей ( )dtD ,P . Данная декомпозиция на состав-
ляющие наиболее часто носит аддитивный характер [2,76–81] 

( ) ( ) ( )dtdtdt DS ,,, PPP += , (1.1) 
иногда используется и мультипликативная декомпозиция [6] 

( ) ( ) ( )dtdtdt DS ,,, PPP = , (1.2) 
в частности, она применяется в Центральном энерго-

управлении Великобритании (CEGB). В используемых же 
обозначениях графиков нагрузки ( )dt,P , ( )dtS ,P , ( )dtD ,P  ма-
лой буквой d обозначают тип (номер) прогнозируемых суток. 

В других работах [6] используется также модель, объе-
диняющая свойства аддитивной и мультипликативной моде-
лей: 

( ) ( ) ( ) ( )dtdtdtdt DSS ,,,, 21 PPPP += ,  (1.3) 
где ( )dtS ,1P , ( )dtS ,2P  – детерминированные составляющие 

и ( )dtD ,P  – остаточная случайная составляющая. 
Наиболее широкое применение в электроэнергетике име-

ет аддитивная модель (1.1), модели же (1.2) и (1.3) имеют ог-
раниченное применение. 

Процесс ( )dtD ,P  в первом приближении считают стацио-
нарным или почти стационарным, что упрощает его модели-
рование с использованием статистических моделей, рассмот-
ренных выше. 
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Моделирование (выделение) стандартной составляющей 
),( dtSP  осуществляют различными методами: 

- путем сглаживания нестационарной реализации графика 
энергетической нагрузки ГЭН скользящим [6,11,80] или экс-
поненциальным [6,82] осреднением; 

- аппроксимацией полиномами [6,21]; 
- компенсацией стандартной составляющей на основе 

вычисления разностей n-го порядка [6,83];  
- разделением составляющих по частотам и моделирова-

нием конечными рядами Фурье [11,21,81]; 
- компенсацией математического ожидания суточными 

разностями [6,21]; 
- путем декомпозиции по ортогональным векторам или 

функциям [5,6]; 
- путем нейросетевого или нечеткого моделирования 

(сглаживания) [68,71,72] и др. 
Кроме того, при моделировании стандартной состав-

ляющей ),( dtSP  также осуществляют ее декомпозицию на от-
дельные составляющие [6] 

( ) ( ) ( ) ( ) ( )dtdtdtdtdt WTRAS ,,,,, PPPPP +++= , (1.4) 
где ( )dtA ,P  – составляющая, учитывающая изменение 

средней сезонной нагрузки; ( )dtR ,P  – составляющая, учиты-
вающая недельную цикличность изменения электропотреб-
ления; ( )dtT ,P  – трендовая составляющая, моделирующая до-
полнительные эффекты, связанные с изменением времени 
восхода и захода солнца от сезона к сезону; ( )dtW ,P  – состав-
ляющая, учитывающая зависимость электропотребления от 
метеофакторов, в частности температуры. Каждая из состав-
ляющих в комбинированной модели (1.1), (1.4) реализуется 
на основе того или иного статистического или детерминиро-
ванного метода. Это и определяет многообразие комбиниро-
ванных прогнозных математических моделей ГЭН (рис.1.3). 
Комбинированные модели вида (1.1), (1.4) не всегда обяза-
тельно содержат все перечисленные составляющие: ( )dtS ,P , 

( )dtA ,P , ( )dtR ,P , ( )dtT ,P , ( )dtW ,P , ( )dtD ,P . 
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В ряде случаев одни составляющие вбирают в себя 
функции других отсутствующих в модели составляющих. 

На рис.1.3 приведено 14 вариантов используемых комби-
нированных прогнозирующих математических моделей. При 
этом в столбцах 2–7 таблицы приводятся составляющие мо-
дели с номерами детерминированных или статистических 
моделей (см. рис.1.1, 1.2), которые используются для их мо-
делирования. 
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№ PW PA PR PT PD PS Обозначение Ист. 

1 - 2 2 - 3(9) - СС-СС-АР(ЭС) [84] 

2 - 2 9 - 7 - СС-ЭС-СМ [85] 

3 - 2 9 - - 13 СС-ЭС-КЛ [86] 

4 - 2 9 14 7 - СС-ЭС-ПИ-СМ [80] 

5 - 15 9 - 3 - РФ-ЭС-АР [87] 

6 - 15 - - 11 - РФ-АРИССТ [88] 

7 14 2 9 14 11 - СС-ЭС-ПИ-ПИ-
АРИСС [89] 

8 11 2 2 - 7 - СС-СС-АРИСС 
-СМ [84] 

9 - 5 - - 7 - ФКсТ-СМ [90] 

10 - 14 - - 11 - ПИсТ-АРИСС [91] 

11 - 2 - - 3 - ВСС-АР [92] 

12 1 15 9 - 11 - РФ-ЭС-АРИСС [2] 

13 - 15 - - 11 13 РФ-АРИСС-КЛ [93] 

14 - 17 - - 11 13 НС-АРИСС-КЛ [71] 

 

Комбинированные прогнозные 
математические модели ГЭН P(t,d)

Стандартный 
график PS(t,d)

Метеофактор 

PW(t,d)
Сезонная 

PA(t,d)
Недельная 

PR(t,d)

Доп.эффекты 
(восх.,зах.) 

PT(t,d) 

Остаточная сост.
PD(t,d)

 
Рис. 1.3 
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В столбце 8 приводится краткое обозначение комбини-

рованной модели в соответствии с детерминированными и 
статистическими моделями, которые в ней используются, для 
моделирования составляющих: 

 
СС – модель скользящей средней; 
ЭС – модель экспоненциального сглаживания; 
АР – модель авторегрессии; 
СМ – модель спектрального разложения; 
КЛ – модель на основе кластерного анализа и теории 

распознавания образов; 
ПИ – модель на основе полиномиальной интерполяции; 
РФ – модель на основе разложения конечным рядом Фу-

рье; 
АРИСС – модель авторегрессии интегрированного 

скользящего среднего; 
АРИССТ – то же, что АРИСС, но с дополнительно вве-

денным фактором – температурой; 
ФКсТ – модель на основе фильтра Калмана, но с учетом 

температуры; 
ПИсТ – то же, что ПИ, но с учетом температуры; 
ВСС – модель взвешенного скользящего среднего; 
НС – модель нейронной сети. 
 
В столбце 9 таблицы приводится номер литературного 

источника, откуда взято описание комбинированной модели. 
Варианты реализации различных компонент комбиниро-

ванной модели, с использованием перечисленных статисти-
ческих и детерминированных моделей, а также анализ полу-
чаемых при этом результатов будут приведены ниже. 
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Характеристика основных типов комбинированных 
вероятностно-детерминированных математических 
моделей 

Вероятностно-детерминированные математические про-
гнозирующие модели графиков энергетических нагрузок яв-
ляются комбинацией статистических и детерминированных 
моделей. Именно эти модели позволяют обеспечить наилуч-
шую точность прогнозирования, адаптивность к изменяюще-
муся процессу электропотребления [2,5,6]. 

Они базируются на концепции стандартизованного мо-
делирования нагрузки [6], то есть аддитивной декомпозиции 
фактической нагрузки ( )dt,P  на стандартизованный график 
(базовой составляющей, детерминированного тренда) ( )dtS ,P  
и остаточную составляющую ( )dtD ,P  [2,76–81]: 

( ) ( ) ( )dtdtdt DS ,,, PPP += , 
где t – время внутри суток; d – номер суток, например, в 

году. 
В стандартной составляющей ),( dtSP  при моделировании 

также осуществляют аддитивное выделение отдельных со-
ставляющих, учитывающих [6]: изменение средней сезонной 
нагрузки ( )dtA ,P ; недельную цикличность изменения элек-
тропотребления ( )dtR ,P ; трендовую составляющую, модели-
рующую дополнительные эффекты, связанные с изменением 
времени восхода и захода солнца от сезона к сезону ( )dtT ,P ; 
составляющую, учитывающую зависимость электропотреб-
ления от метеофакторов ( )dtW ,P , в частности температуры, и 
т.п. 

 Рассмотрим подробнее подходы моделирования от-
дельных составляющих на основе упомянутых выше детер-
минированных и статистических моделей [6]. 

 Моделирование средней сезонной нагрузки ( )dtA ,P  за-
частую осуществляют с использованием простого скользяще-
го усреднения [80,84,85,87,89]: 
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( ) ( )∑
−

=
=

1
,,1,

d

d-Ni
A it

N
dt PP  

где N – число обычных регулярных (рабочих дней), со-
держащихся в n прошедших неделях. nN 7≠ , так как из не-
дель исключаются «специальные», «нерегулярные дни», 
праздники и т.п. Осуществляется ежедневное обновление пу-
тем усреднения данных за n прошедших недель. 

 Моделирование недельной цикличности ( )dtR ,P  также 
осуществляют скользящим усреднением вида [80,84] 

( ) ( ) ( )( )∑
=

−=
n

k
AR kd-tkd-t,

n
dt

1
7,71, PPP  

с обновлением еженедельно путем усреднения данных за 
n прошедших недель, либо используя экспоненциально взве-
шенное скользящее среднее [85, 87, 89]: 

( ) ( ) ( )( ) ( ) ( )7,1,,, −α−+−α= dtdtdtdt RAR PPPP , 
где α  – эмпирически определяемый параметр сглажива-

ния ( 10 ≤α< ). В работе [81] для моделирования ( )dtA ,P  и 
( )dtR ,P  используется семь составляющих ( )dtiS ,P , 7,1=i , для 

каждого дня недели, причем каждое ( )dtiS ,P  определяется от-
дельно с использованием модели экспоненциального сглажи-
вания. Авторы работы [96] для моделирования ( )dtA ,P  ис-
пользуют двойное экспоненциальное сглаживание типа 
Холта–Винтерса. В работе [97] для моделирования ( )dtA ,P  
используют гармоническое представление вида 

( ) ( ) ( ) ( ) ( ) ( ) ( )522cos,522sin,,,, ndtddndtccndtbbdtaadtA π+π++=P , 
с параметрами ( ) ( ) ( ) ( )dtdddtccdtbbdtaa ,,,,,,, , оцениваемыми по 
эмпирическим данным (значение «52» определяет число не-
дель в году). Однако задача адаптивного оперативного оце-
нивания этих параметров в указанной работе не решена пол-
ностью. Моделирование ( )dtS ,P , ( )dtA ,P  в ряде случаев осу-
ществляют с помощью конечных рядов Фурье: с недельным 
периодом [81], с суточным периодом [88, 98] либо с раздель-
ным моделированием рабочих и выходных дней, соответст-
венно, с периодами 5 и 2 суток [79]: 
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( ) ( ) ( ) ( )( )∑
=

ω+ω+=
m

k
kkkkS tdbtdadadt

1
0 sincos,P . 

Для моделирования трендовой составляющей ( )dtT ,P  ис-
пользуют либо полиномы 2–4 порядков [80], либо различные 
нелинейные эмпирические функции, например, вида [85] 

( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )[ ]2
2

2
22

2
1

2
111 --

2
1, tddttFtddttFdfndtT +∆++∆−=P , 

где ( )df1  – полином четвертой степени, описывающий 
относительно медленные сглаженные изменения нагрузки 
( )dt,P  в дневные часы по сезонам; ( )tFi , ( )ti∆ , ( )tdi  – функции, 

моделирующие эффекты, связанные с изменением времени 
восхода и захода солнца по сезонам. 

Для учета зависимости электропотребления от метеофак-
торов в ряде случаев вводят дополнительную составляющую 

( )dtW ,P  [80, 89]. В работе [89] теоретически обосновывается 
включение ( )dtW ,P  в модель, но возможности моделирования 
температурного эффекта при этом рассматриваются лишь в 
ограниченном объеме [6]. Так, для представления темпера-
турной составляющей ( )dtW ,P  для условий Египта использу-
ется полиномиальная модель [80] 

( )
( ) ( )

( ) ( )







>−+−+
≥≥
>−+−+

=

−−

−−

,70,6060
;6070,0
;70,7070

,
2

12122

2
11111

TTcTba
T
TTcTba

dt

tt

tt

WP  

где tT  – температура воздуха в t-й час. 
Применяется регрессионный метод для «нормализации» 

максимумов и провалов СГЭН с учетом температуры, при 
этом нормализованные данные представляются одномерной 
моделью авторегрессии интегрированного скользящего сред-
него (АРИСС) [84]. 

Также используют для моделирования ( )dtS ,P  с учетом 
температуры [90] рекурсивный фильтр Калмана, в который 
включаются внешние факторы – прогноз температуры. 
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Либо используют в краткосрочном диапазоне полиноми-
альную кубическую интерполяцию часовых нагрузок и при 
этом в модели учитывают влияние температуры [91]. 

Для учета среднесуточных прогнозов температуры, раз-
личных метеоусловий на СГЭН и в то же время повышения 
устойчивости модели предлагается использовать особую мо-
дификацию модели скользящего среднего [92] 

( ) ( ) ( )∑
=

=
m

i
iSiS dttpdt

1
,, PP , 

где для различных метеоусловий, связанных с вероятно-
стями ( )tpi , формируется ряд из m графиков нагрузки ( )dtiS ,P , 
а прогноз определяется как условное математическое ожида-
ние. Вероятности ( )tpi  уточняются по методу Байеса по мере 
поступления новых фактических значений нагрузки и факто-
ров в течение суток. 

 Моделирование остаточной составляющей ( )dtD ,P  
осуществляют как с использованием одномерных моделей, 
так и многомерных, учитывающих метеорологические и дру-
гие внешние факторы. Так, в качестве одномерной (однофак-
торной) модели зачастую используют модель авторегрессии 
АР(k) порядка k  

( ) ( ) ( )∑
=

ε+−α=
k

i
DiD tditdt

1
,, PP , 

где ( )tε  – остаточный белый шум. Для прогнозирования 
часовых (получасовых) отсчетов используют модели АР(1), 
АР(2) [81] и даже АР(24) [87]. Даже в случае использования 
обобщенной модели АРИСС для ( )dtD ,P  все равно ее приме-
нение сводится к моделям АР(1), АР(2) как для пятиминут-
ных [91], так и часовых измерений нагрузки [89]. 

 Иной однофакторной моделью моделирования состав-
ляющей ( )dtD ,P  является модель простого или двойного экс-
поненциального сглаживания. Эта модель позволяет эффек-
тивно выявлять краткосрочные тренды в процессе изменения 
остаточной нагрузки [84]. 
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Простота, экономичность, рекурсивность и вычислитель-
ная эффективность обеспечивают методу экспоненциального 
сглаживания широкое применение. С помощью простого 
экспоненциального сглаживания по ( )dtD ,P  при различных 
постоянных 1α  и 2α  определяют две экспоненциальные сред-
ние ( )dtD ,1P  и ( )dtD ,2P  . Прогноз остаточной составляющей 

( )dltD ,+P  с упреждением l  определяют [6] так: 
( ) ( ) ( ) ( ) ( ) ( )( )dtdtlfltwdtdlt DDDD ,,,,,,, 21211 PPPP −+=+ αα , 

где ( )ltw ,  – функция времени упреждения l и скорости 
изменения соответствующей базовой нагрузки ( )dtS ,P ; 
( )lf ,, 21 αα  – функция времени упреждения и постоянных 

сглаживания. Величина ( )ltw ,  служит для ослабления экстра-
поляции трендов при значительных упреждениях. Однако 
параметры этой модели обеспечивают адаптивность в отно-
шении изменений ( )dtS ,P , но не в отношении предшествую-
щих ошибок прогноза. 

 В иных работах [84,85] для моделирования ( )dtD ,P  ис-
пользуется вариант канонического разложения по собствен-
ным векторам автоковариационной матрицы 

( ) ( ) ( )tdtQdt
k

i
iiiD ε+λα= ∑

=1

21 ,,P , 

где ( )dtQii ,,λ  – соответственно i-е собственное значение 
и собственный вектор автоковариационной матрицы процес-
са ( )dtD ,P . Опыт использования этой модели в Великобрита-
нии и Японии отмечает высокую чувствительность к оценкам 
параметров модели, но также более низкую, по сравнению с 
экспоненциальным сглаживанием, робастность в условиях 
больших шумов и помех. 

Моделирование остаточной составляющей ( )dtD ,P  в мно-
гофакторной форме используется на практике не часто. Это 
объясняется быстрой адаптацией более простых однофактор-
ных моделей к вариациям нагрузки при оперативном и крат-
косрочном прогнозах. 
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Кроме того, многофакторные модели требуют большего 
объема исходных данных, измерительной оперативной ин-
формации, данных различных прогнозов и т.п. Так малая 
часть используемых многофакторных моделей ( )dtD ,P  бази-
руется, например, на моделях типа АРИСС (ARIMAX-
модель) или нелинейных регрессионных моделях с включен-
ным дополнительным температурным фактором [79, 81, 88]. 

 

Выводы по анализу прогнозирующих 
математических моделей процессов 

Проведенный анализ прогнозирующих моделей показал, 
что в настоящее время не существует единственного наибо-
лее предпочтительного метода для краткосрочного или опе-
ративного прогнозирования нагрузки. Несмотря на общность 
этой задачи, стоящей перед каждой энергосистемой, про-
мышленным предприятием, объединением в литературе име-
ется огромное многообразие данных подходов. Это обстоя-
тельство вызывает необходимость значительной работы по 
привязке того или иного выбранного метода прогнозирова-
ния к реальным условиям и особенностям функционирования 
каждого конкретного объекта. 

 При анализе прогнозирующих математических моде-
лей оперативного и краткосрочного прогнозирования выде-
ляют следующие основные классификационные признаки 
(наиболее важные их характеристики) [6]: 

− способ моделирования детерминированной (тренда) и 
случайной составляющих процесса изменения электрической 
нагрузки; 

− способ учета влияния внешних факторов и метеороло-
гической информации на процесс электропотребления; 

− способ учета регулярности чередования реализаций 
контролируемого процесса (суточных ГЭН). 
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Приоритетным видом моделей можно рассматривать 
комбинированные вероятностно-детерминированные про-
гнозные модели ГЭН, так как при этом в модели одновре-
менно учитываются и используются как статистические, так 
и детерминированные составляющие, что позволяет достичь 
наилучшего качества прогнозирования. 

Именно к этому типу моделей относят так называемый 
трендовый подход, когда процесс электропотребления моде-
лируется как отклонение фактических значений от тренда 

( )dtS ,P , который обеспечивает устойчивость получаемой мо-
дели и достаточную точность моделирования. 

Разработаны различные способы оценивания тренда ( )tSP  
процесса электропотребления, при этом его оценка осущест-
вляется на определенном временном интервале моделирова-
ния бT . 

От выбора интервала моделирования во многом зависит 
точность получаемой модели. 

В большинстве случаев в качестве интервала моделиро-
вания выбирают либо суточный, либо недельный, либо ме-
сячный интервалы [2, 6, 11, 12, 18]. 

Ввиду сложности процесса электропотребления )(tP  при 
его моделировании неизбежно принятие некоторых априор-
ных предложений (эвристик) о характере этого процесса.  

Состоятельность этих предложений подтверждается или 
опровергается опытом практического применения. 

В существующих моделях [2,6,11,12,18] эти эвристики 
связаны и с выбором интервала моделирования бT . 

Так, в качестве основной эвристики принимается пред-
положение о близости значений нагрузки )(tP  в совпадающие 
моменты времени интервалов моделирования (недель, меся-
цев), т.е. вносится предложение о недельной (месячной) пе-
риодичности процесса электропотребления. 

Но данная эвристика страдает недостатком, так как она 
не учитывает: 
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- наличие технологических периодичностей, не всегда 
совпадающих с недельной (месячной); 

-  наличие суток с особым режимом потребления: празд-
ничных дней, дней с ограниченным электропотреблением, 
дней с особым технологическим циклом и т.п. 

Наилучшим образом согласуется с математическими 
прогнозными моделями оперативного и краткосрочного про-
гнозирования эвристика о суточном интервале моделирова-
ния бT . В этом случае тренд ( )dtS ,P  подбирается на суточном 
интервале из набора имеющихся СГЭН. 

Этот подход к большей адаптивности, устойчивости про-
гнозной модели и обеспечивает учет нерегулярных дней [5]. 

Он лучшим образом согласуется с подходом основанным 
на возможности классификации (кластеризации) имеющих-
ся суточных ГЭН для выделения различающихся их типов, и 
при моделировании – определении типа графика ( )dtS ,P , ко-
торый наиболее близок к текущему графику для повышения 
точности моделирования [5]. 

При этом подразумевается наличие алгоритмов опреде-
ления подобия суточных ГЭН или правил распознавания. 

Приоритетным подходом для моделирования ( )dtS ,P  яв-
ляется функциональный подход [11, 81] или использование 
моделей по времени суток, при этом детерминированная со-
ставляющая нагрузки представляется в виде 

( ) ( ) ( )dtdtfdtP
m

i
iiS ,,,

1
ξ+∑α=

=
 (3.1) 

как сумма конечного числа детерминированных функций 
времени ( )dtfi , , определенных на интервале бT , равном, как 
правило, 24 или 168 часов. 

Коэффициенты iα  считаются либо медленноменяющи-
мися во времени константами, либо величинами, зависящими 
от внешних влияющих факторов [5]. 
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Данный подход отвечает концепции многомерного, а не 
только многофакторного моделирования СГЭН, который 
предполагает рассмотрение предыстории многомерного про-
цесса электропотребления как последовательности статисти-
чески зависимых реализаций случайного вектора СГЭН Рj со 
взаимно коррелированными координатами ijP , ввиду чего 
любая координата ijP  вектора содержит информацию не 
только о ее предыдущих и будущих значениях, но также и о 
значениях других координат. 

 Одним из вариантов модели (3.1) является использова-
ние тригонометрических полиномов или конечных гармони-
ческих рядов Фурье. 

При этом учет изменчивости формы моделируемого 
СГЭН осуществляется корректировкой коэффициентов Фу-
рье, но это требует прогнозирования изменения достаточно 
большой группы коэффициентов (около 10 и более). 

Кроме того, необходимы методики выявления значимых 
коэффициентов из бесконечного ряда Фурье. Тем не менее 
данный функциональный подход при моделировании тренда 
предпочтительнее полиномиального, так как обеспечивает 
большую точность и учитывает влияние факторов на измене-
ние формы ГЭН.  

 К моделям вида (3.1) можно отнести и  алгебраические 
регрессионные зависимости вида. 

Другим вариантом модели (3.1) являются детерминиро-
ванные модели спектрального разложения и декомпозицион-
ного метода моделирования СГЭН. 

Они реализуют моделирование на основе разложения 
СГЭН по детерминированному ортонормированному базису, 
отличному от гармонических функций. 

Данный подход можно рассматривать как перспективный 
и обеспечивающий реализацию адаптивной модели малой 
размерности. 
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При построении моделей ГЭН на основе аппарата ряда 
Фурье или в виде (3.1) необходимо осуществлять выбор тре-
буемого оптимального шага дискретизации процесса, так как 
эта процедура обладает регуляризирующим и стабилизи-
рующим свойством, называемым саморегуляризацией. Уве-
личение шага ведет к регуляризирующему эффекту, но одно-
временно к снижению точности модели и наоборот. Алго-
ритмы точной дискретизации и интерполяции дискретных 
сигналов важны в случае использования комбинированных 
иерархических моделей электропотребления, когда на разных 
уровнях иерархии моделируемый процесс представляется 
разной частотой дискретизации.  

В качестве упрощенных краткосрочных прогнозирующих 
моделей электропотребления ( )dt,P  перспективно использо-
вание моделей на основе нейросетевых подходов, а также ис-
пользование моделей экспоненциального сглаживания раз-
личных порядков. 

Для учета влияния внешних факторов: температуры ок-
ружающей среды θ, продолжительности светового дня µ , 
времени года на процесс электропотребления ( )dt,P  сущест-
вуют следующие подходы: 
− построение зависимости от факторов при моделировании 

детерминированной составляющей (тренда) ( )dtS ,P ; 
− построение зависимости от факторов при моделировании 

остаточной составляющей ( )dtD ,P . 
Изменение формы тренда ( )dtS ,P  в целом, как правило, 

зависит от среднесуточных факторов типа: средняя темпера-
тура за сутки, время восхода и захода солнца (долгота свет-
лого времени суток), средняя освещенность и т.п., что и учи-
тывают при моделировании этой составляющей. Учет этой 
зависимости лучше всего осуществлять, используя модель 
вида (3.1), с помощью которой адекватно моделируется из-
менение формы графика в целом, так как реализуется много-
мерный принцип моделирования процесса электропотребле-
ния. 
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Иные подходы, в частности, основывающиеся на приме-
нении полиномиальных составляющих ( )ср,, θdtWP , учитыва-
ют влияние временного фактора t , влияние среднесуточной 
температуры воздуха срθ  [91]. 

Однако эти подход возможны, если обосновано приме-
нение полиномиальной модели и имеется достоверная ин-
формация о прогнозе температуры. 

Кроме того, данный подход позволяет учесть изменение 
средней мощности нагрузки за сутки, но не изменение фор-
мы графика нагрузки. 

Как показано в [6], при оперативном прогнозировании 
(интервал прогнозирования от нескольких минут до часа) од-
номерные адаптивные математические модели (ARMA, Бок-
са–Дженкинса или ARIMA, ARI, экспоненциального сглажи-
вания и другие), применяемые при моделировании остаточ-
ной составляющей ( )dtPD , , косвенным образом отслеживают 
большую часть оперативных изменений нагрузки, обуслов-
ленных колебаниями суточной температуры. 

В связи с этим применение более сложных многомерных 
моделей не дает заметного увеличения точности при прогно-
зировании на короткие интервалы (несколько минут, до ча-
са). 

Эти соображения подтверждаются результатами работы 
[6]. 

При прогнозировании же на более продолжительные ин-
тервалы (несколько часов, суток, недель) учет температуры в 
многомерных моделях типа (3.1) необходим. 

Перечисленные одномерные адаптивные математические 
модели (ARI, Бокса–Дженкинса или ARIMA, ARМА, экспо-
ненциального сглаживания и другие) характеризуются мате-
матически разработанным алгоритмом идентификации, вы-
сокими адаптивными свойствами, устойчивостью к ошибкам 
исходных данных и точностью прогноза [6, 18, 47, 54, 55]. 
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При любом способе выделения тренда ( )dtS ,P  из ГЭН, 
остаточная составляющая ( )dtD ,P  в большинстве своем оста-
ется нестационарным случайным процессом, моделирование 
которого необходимо вести с учетом этой нестационарности, 
что наиболее просто осуществить с использованием регрес-
сионных моделей с интегральной составляющей (ARI, 
ARIMA, ARIMAX) [6,52,54] или моделей экспоненциального 
сглаживания [6,56]. 

Алгоритмы моделей экспоненциального сглаживания хо-
рошо разработаны только для моделей до 2-го порядка вклю-
чительно, поэтому требуется математическая разработка ал-
горитмов этих методов для более высоких порядков, что 
обеспечит большую гибкость в использовании указных мо-
делей. 

В отличие от трендового подхода к моделированию про-
цесса электропотребления существует параметрический под-
ход, не использующий явную декомпозицию ГЭН на состав-
ляющие ( )dtS ,P  и ( )dtD ,P  [6, 83]. 

Моделирование процесса электропотребления ( )dt,P  в 
целом осуществляется при этом с использованием моделей, 
применяемых для моделирования остаточной составляющей 

( )dtD ,P  при трендовом подходе. 
Параметрический подход имеет тот недостаток, что при 

его использовании плохо учитывается предыстория измене-
ния процесса электропотребления за предыдущие сутки. 

Практическое применение данного подхода показало, что 
он обеспечивает требуемую точность прогноза только при 
прогнозировании на 1–2 интервала дискретизации процесса и 
погрешность быстро растет при увеличении упреждения про-
гнозирования [5, 6]. 

Учет влияния внешних факторов на форму ГЭН при па-
раметрическом подходе в одномерных моделях типа ARIMA 
осуществляется построением регрессионных членов, завися-
щих от этих факторов (ARIMAX-модели и т.п.). 

 



21 

 

Но это не позволяет адекватно моделировать изменение 
формы ГЭН от этих факторов, так как не учитывается разли-
чие влияния факторов на разные точки графика электропо-
требления [21]. 

Практика применения для прогнозирования ГЭН фильт-
ров Калмана–Бьюси, Винера (модель Заде–Рагаззини) пока-
зала [3, 11, 21], что в ряде случаев из-за нестационарности 
процесса проявляется присущий данным фильтрам эффект 
расходимости, из-за чего резко, до недопустимой величины 
увеличивается ошибка прогнозирования. 

Применение регуляризирующих алгоритмов для компен-
сации данного эффекта резко увеличивает объем расчетов 
при моделировании и прогнозе, что в свою очередь увеличи-
вает вероятность расходимости фильтра из-за ошибок округ-
ления [3]. 

Из проведенного анализа выделим общие подходы к по-
строению оперативных и краткосрочных прогнозных моде-
лей процесса электропотребления: 

1. Модель должна строиться на основе декомпозиции 
процесса на детерминированную ( )dtS ,P  и случайную ( )dtD ,P  
составляющие (трендовый подход), что обеспечит лучший 
учет предыстории, устойчивость модели к ошибкам в исход-
ных данных и точность прогнозирования. Должны использо-
ваться комбинированные вероятностно-детерминированные 
прогнозные модели. 

2. Наиболее согласующейся с целями и задачами опера-
тивного и краткосрочного прогнозирования при математиче-
ском моделировании является эвристика о суточном интер-
вале моделирования бT  электропотребления. 

3. Моделирование детерминированной составляющей 
( )dtS ,P  необходимо осуществлять с использованием функ-

ционального подхода с использованием моделей типа (3.1), 
что позволит наиболее точно учесть влияние внешних факто-
ров на форму графика процесса электропотребления и реали-
зовать многомерный подход к моделированию процесса 
электропотребления. 



22 

 

4. При моделировании СГЭН должно быть учтено нали-
чие нескольких типов графиков электропотребления для дан-
ного объекта электропотребления, что подразумевает разра-
ботку алгоритмов их кластеризации и распознавания. При 
осуществлении прогноза автоматически должен определять-
ся наиболее подходящий типовой ГЭН или тренд ( )dtPS ,  по 
начальному отрезку текущего процесса. 

5. При моделировании СГЭН важную роль играют алго-
ритмы интерполяции дискретных сигналов и выбора опти-
мальной частоты дискретизации. Они используются для со-
гласования моделируемых процессов на разных уровнях ие-
рархии комбинированных моделей, а также как регуляризи-
рующий фактор в моделях типа (3.1). 

6. В качестве упрощенных подходов при прогнозирова-
нии ( )dtS ,P  эффективно использование моделей на основе ис-
кусственных нейронных сетей.  

7. Моделирование нестационарной остаточной состав-
ляющей ( )dtD ,P  необходимо осуществлять с применением 
адаптивных одномерных регрессионных моделей с инте-
гральной составляющей (ARI, ARIMA, ARIMAX) [6,52,54] 
или моделей экспоненциального сглаживания различного по-
рядка [6,56], что позволит скомпенсировать действие неуч-
тенных факторов и уменьшить погрешность прогноза. 
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